
J Glob Optim (2008) 41:283–298
DOI 10.1007/s10898-007-9230-5

The optimization problem over a distributive lattice

Mahbobeh Hosseinyazdi

Received: 9 November 2006 / Accepted: 5 September 2007 / Published online: 11 October 2007
© Springer Science+Business Media, LLC. 2007

Abstract In this paper we give a necessary and sufficient condition for existence of min-
imal solution(s) of the linear system A ∗ X ≥ b where A, b are fixed matrices and X is
an unknown matrix over a lattice. Next, an algorithm which finds these minimal solutions
over a distributive lattice is given. Finally, we find an optimal solution for the optimization
problem min{Z = C ∗ X |A ∗ X ≥ b} where C is the given matrix of coefficients of objective
function Z .
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1 Introduction

Linear and combinatorial optimization have been studied by many authors. Optimization
over residuated lattice-ordered commutative monoid is studied in [14]. Furthermore, in many
applications, one needs to find the solution of fuzzy linear systems of equations and inequal-
ities over a bounded chain in [8,10] in finite dimensional case and for systems with infinite
number of variables [13]. The resolution problem for fuzzy relation equations has been put
forward by Sanchez [11]. Following his fundamental result for the greatest solution, many
other authors proposed thorough investigation for a variety of special resolution problems,
using different mathematical methods. We shall list the main results in this field. Let us
suppose that the fuzzy relation equation is consistent. Then:
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– it has a greatest solution [11], which is easily computable;
– the minimal solutions of a fuzzy relation equation are computable [9];
– all solutions of fuzzy relation equation are completely determined by a minimal and the

greatest solutions [4,7];
– the requirements for a unique solution of a fuzzy relation equation in a complete Brouwe-

rian lattice are investigated [12];

Obviously, there exist many interesting results obtained by many authors and with highly
varied mathematical methods. First of all we would like to pay attention to the difference
between the classical problem, i.e., how to solve conventional linear systems with traditional
addition and multiplication and how to solve linear systems over a lattice which is the subject
of this study. There is also some differences between solving a linear system over a bounded
chain [8,10] and solving it over a bounded distributive lattice which will be discussed in this
study. In [5] bounded chain is replaced by a pseudo-Boolean lattice for solving the linear
system of inequalities A ∗ X ≤ b. Then, by using the approach developed in [14] authors
solved the linear system of inequalities A ∗ X ≤ b, over a pseudo-Boolean lattice L . The
method which was given there is very easy to apply for solving the fuzzy linear systems
studied in [8]. Note that the existence of minimal solutions of A ∗ X ≥ b over a bounded
chain was proved in [6]. For L-fuzzy linear systems A ∗ X ≥ b and A ∗ X = b over a
bounded distributive lattice, a necessary and sufficient condition for consistency of systems
was given in [6]. In this paper, we consider a distributive lattice L . First, we give a necessary
and sufficient condition for existence of minimal solutions. Then, we obtain an algorithm
for finding these minimal solutions when there are finitely many of them. In the last section
we give an algorithm which allows to find an optimal solution for the optimization problem
min{Z = C ∗ X |A ∗ X ≥ b}. It is interesting that in this algorithm we compute the minimum
value of Z without computing all minimal solutions of the linear system of inequalities.
Moreover, it can be used when the system has infinitely many minimal solutions.

2 Preliminaries

In this section we give some preliminaries which we need in sequel sections. In the next
exposition the terminology for lattice theory and algebra is according to [1,3].

Definition 2.1 Let (L ,≤) be a lattice and S ⊆ L .

(i) If (S,≤) is a lattice, then S is called a sublattice of L and denoted by S ≤l L .
(ii) If a ∨ b(a ∧ b, respectively) exists for all a, b ∈ S, then S is called join-semi-sublattice

(meet-semi-sublattice, respectively) of L (see [3]).
(iii) A sublattice I is called an ideal, if a ∈ I, x ∈ L and x ≤ a implies x ∈ I .
(iv) A sublattice S is called convex, if x, y ∈ S and x ≤ z ≤ y, then z ∈ S.

Note that every convex sublattice is an ideal (see [3], p. 17).

Definition 2.2 (i) A lattice (L ,≤) is called distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ,

or equivalently

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) .
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(ii) A lattice (L ,≤) is called complete if
∨

X and
∧

X exist for all subsets X of L .
(iii) A lattice (L ,≤) is called conditionally complete if

∨
X and

∧
X exist for all non-

empty bounded subsets X of L . It is clear that every complete lattice is a conditionally
complete lattice.

(iv) A lattice (L ,≤) is called infinitely distributive if

a ∧
(

∨

i∈I

xi

)

=
∨

i∈I

(a ∧ xi ) , (1)

and

a ∨
(

∧

i∈I

xi

)

=
∧

i∈I

(a ∨ xi ) . (2)

where I is an index set.

Note that (1) and (2) may not hold in every complete distributive lattice. See the following
example.

Example 2.3 ([1]) Let (L ,⊆) be the complete lattice of all closed subsets of the plane.
Let c denote the circle x2 + y2 = 1 and dk denote the disc x2 + y2 ≤ 1 − k−2, then
c ∧ (

∨∞
k=1 dk) = c, but

∨∞
k=1(c ∧ dk) is the empty set. On the other hand, (2) holds in this

lattice, because ∨ and ∧ coincide with the set-theoretic operations ∪ and ∩, respectively.

Theorem 2.4 ([1], Theorem V.5.16) In any complete Boolean lattice L, (1) and (2) hold
for any index set I .

Furthermore, in any complete lattice, (1) and (2) imply the following equalities (see [1]).

Lemma 2.5 In any complete lattice, (1) implies that
⎛

⎝
∨

i∈I1

xi

⎞

⎠ ∧
⎛

⎝
∨

j∈I2

y j

⎞

⎠ =
∨

i∈I1

∨

j∈I2

(
xi ∧ y j

)
, (3)

and (2) implies
⎛

⎝
∧

i∈I1

xi

⎞

⎠ ∨
⎛

⎝
∧

j∈I2

y j

⎞

⎠ =
∧

i∈I1

∧

j∈I2

(
xi ∨ y j

)
. (4)

Note that (3) and(4) are also true for finite number of index sets I1, . . . , In ; by induction.

Corollary 2.6 In any complete Boolean lattice, (3) and (4) hold.

Definition 2.7 Let H be a non-empty set and ∗ : H × H −→ H be a binary operation. Then

(i) (H, ∗) is called a semigroup if a ∗ (b ∗ c) = (a ∗ b) ∗ c,∀a, b, c ∈ H .
(ii) A semigroup (H, ∗) is called a monoid if it contains an element e ∈ H such that

e ∗ a = a ∗ e = a,∀a ∈ H .
(iii) A monoid (H, ∗) is called a group if for every element a ∈ H , there exists an element

a−1 ∈ H such that a ∗ a−1 = a−1 ∗ a = e.

123



286 J Glob Optim (2008) 41:283–298

Definition 2.8 Let (H, ∗) be a commutative group (semigroup, monoid, respectively) with
a partial order ≤. Then (H, ∗,≤) is called a lattice-ordered commutative group (semigroup,
monoid, respectively) if

a ≤ b ⇒ a ∗ c ≤ b ∗ c, ∀a, b, c ∈ H,

for simplification, we call it l-group (l-semigroup, l-monoid, respectively).

Example 2.9 (i) Every lattice (L ,≤) is an l-semigroup by letting ∗ = ∧ or ∗ = ∨. Clearly
a bounded lattice is an l-monoid in the same way.

(ii) The additive group (Z ,+,≤) of integers is an l-group; the same is true for the additive
group (Q,+,≤) of rational numbers.

(iii) Let G = C[0, 1] be the set of all continuous real-valued functions on closed interval
[0, 1]. Then G is an l-group with respect to usual + and ≤ of real-valued functions.

Theorem 2.10 ([1], Theorem XIII.14.25) In any conditionally complete l-group, (1) and
(2) hold.

Definition 2.11 Let Matn×m(L) be the set of all n ×m matrices over a lattice (L ,≤). Define
a partial order relation on Matn×m(L) as follows:

X ≤ Y ⇔ xi j ≤ yi j ∀i = 1, 2, . . . , n,∀ j = 1, 2, . . . , m,

where X, Y ∈ Matn×m(L).

One can see that (Matn×m(L),≤) is a lattice where its supremum and infimum are defined
componentwise induced by the supremum and infimum of lattice L , respectively.

Definition 2.12 A partially ordered set P satisfies the descending chain condition (DCC)
when every nonvoid subset of P has a minimal element.

Clearly if a partially ordered set P satisfies the DCC, then so do all its subsets (under the
same partial ordering).

Definition 2.13 (i) Any finite partially ordered set (and therefore any finite lattice) P
satisfies the DCC.

(ii) Let N be the set of all natural numbers. Then it satisfies the DCC with respect to both
usual order on N and divisibility relation.

(iii) Let L � N × N × · · · × N (n-times) and ≤ be the order induced by ≤ on N . Then L
satisfies the DCC.

Definition 2.14 Let (H, ∗,≤) be an l-semigroup and A and X be m × n and n × 1 matrices
over H , respectively. Define the matrix A ∗ X by

A ∗ X =
⎛

⎝
m∨

j=1

ai j ∗ x j

⎞

⎠

m×1

.

Definition 2.15 (i) Let (L ,≤) be a lattice. Then, every non-zero minimal element of L is
called an atom.

(ii) An atomic lattice is a lattice L in which every element is a join of atoms, and hence the
join of the atoms which it contains.

(iii) A non-zero element a ∈ L is called join-irreducible if a = b ∨ c implies a = b or
a = c. We denote the set of all join-irreducible elements of L by J .

(iv) For any a ∈ L , let J (a) = { j ∈ J | j ≤ a}.
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Fig. 1 Relationship between and among elements of L

Note that if L satisfies the DCC then every non-zero element a ∈ L can be represented as a
finite supremum of join-irreducible elements; i.e., a = ∨

J (a) (see [1,3]).

Example 2.16 (i) Let X be an arbitrary set. Then P(X), the set of all subsets of X , is a
Boolean atomic lattice.

(ii) Let L = [0, 1] be the bounded chain of real numbers between 0 and 1. Then L is an
atom-less lattice while every non-zero element a ∈ L is join-irreducible.

(iii) Let L = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216} be the set of all divi-
sors of 216 and x ≤ y means x divides y. The set of join-irreducible elements of L ,
which denotes by J , is J = {2, 3, 4, 8, 9, 27} while L has only two atoms 2 and 3 (see
Fig. 1).

(iv) (See [2]) Let Oreg(R) be the set of all regular open subsets of real numbers, that is,
those sets equal to interior of their closures. The sup is not the union of the regular
open sets but the interior of the closure of their union. The in f is the interior of their
intersection. Remarkably, Oreg(R) is a complete Boolean lattice where the lattice com-
plement of U ∈ Oreg(R) is the interior of R\U . Note that Oreg(R) has neither atom
nor join-irreducible element.

Throughout this paper supremum and infimum over the empty set φ are taken to be 0 and 1,
respectively.

3 Solutions of A ∗ X ≥ b

The fuzzy linear system A ∗ X ≥ b with ∗ = ∧, over a bounded chain has been studied by
Peeva [8–10]. She found a necessary and sufficient computational condition for consistency
of this system. She also gave an algorithm for finding its minimal solutions. In this section,
we replace a bounded chain by a distributive lattice and we give a necessary and sufficient
condition for consistency of this system. The approach given here, is an algebraic approach
and totally different from previous one. But existence of minimal solution(s) not necessarily
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holds for any distributive lattice (see Example 3.1). We may also have a linear system such
that it has a minimal solution and also has a chain of solutions which does not tend to a
minimal solution. Therefore, it is very important to find a necessary and sufficient condition
for existence of a minimal solution. We must be sure that for any solution X , there exists a
minimal solution X̃ such that X̃ ≤ X . In Example 3.1 one can see both of the above situations,
which can be classified as follows:

(i) A consistent linear inequality which has no minimal solution,
(ii) A consistent linear inequality which has a minimal solution and also has an infinite chain

of solutions which does not tend to a minimal solution.
In this section we give some sufficient condition for existence of a minimal solution(s).

Let (L ,≤) be a distributive lattice. By a linear system of inequalities A ∗ X ≥ b over L
we mean the following system of inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a11 ∧ x1) ∨ (a12 ∧ x2) ∨ . . . ∨ (a1n ∧ xn) ≥ b1

(a21 ∧ x1) ∨ (a22 ∧ x2) ∨ . . . ∨ (a2n ∧ xn) ≥ b2

.

.

.

(am1 ∧ x1) ∨ (am2 ∧ x2) ∨ . . . ∨ (amn ∧ xn) ≥ bm

(5)

where ai j , x j , bi ∈ L for all i = 1, 2, . . . , m and j = 1, 2, . . . , n.

Example 3.1 Consider two chains C1 and C2, both isomorphic to half-open real interval
(0, 1]. Let L = C1 ∪ C2 ∪ {0}. Define ∨ and ∧ on L as follows:

a ∨ b =
{

max{a, b} if a, b ∈ C1 or a, b ∈ C2

1 otherwise

and

a ∧ b =
{

min{a, b} if a, b ∈ C1 or a, b ∈ C2

0 otherwise

One can see that (L ,∨,∧) is a bounded distributive lattice. Consider the linear inequality
(a ∧ x) ∨ (b ∧ y) ≥ 1, where a ∈ C1, b ∈ C2 and a, b < 1. This inequality has infinitely
many solutions (let x ∈ C1 and y ∈ C2), but does not have any minimal solution. Now
consider the linear inequality x ∨ y ≥ 1. It has two minimal solutions; x = 0, y = 1 and
x = 1, y = 0. Moreover, x = ai , y = bi , where ai ∈ C1, bi ∈ C2 and ai , bi < 1 for all i , is
also a chain of solutions of x ∨ y ≥ 1. One can see it does not tend to a minimal solution.
Note that L is not infinitely distributive lattice.

Theorem 3.2 ([6], Theorem 3.1) Let (L , ∗,≤) be an l-semigroup, A = (ai j )m×n and Xi =
(x ji )n×1; i = 1, 2, be matrices over L. Consider the partial order on Matn×1(L) as in
Definition 2.11. If X1 ≤ X2 then A ∗ X1 ≤ A ∗ X2.

Corollary 3.3 Let (L , ∗,≤) be an l-semigroup, A = (ai j )m×n and Xi = (x ji )n×1; i = 1, 2,
be matrices over L. Then

(i) A ∗ (X1 ∧ X2) ≤ A ∗ X1 ∧ A ∗ X2

(ii) A ∗ (X1 ∨ X2) ≥ A ∗ X1 ∨ A ∗ X2

Remark 3.4 Note that in Corollary 3.3(i), if X1 ≤ X2, then A∗(X1 ∧ X2) = A∗ X1 ∧ A∗ X2.
Clearly if {X j }n

j=1 is a finite chain, then A ∗ (
∧n

j=1 X j ) = ∧n
j=1(A ∗ X j ).
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A necessary and sufficient condition for the consistency of (5) is given in the following
theorem.

Theorem 3.5 ([6], Theorem 4.1) Let L be a distributive lattice. Let A, X and b be m×n, n×1
and m × 1 matrices over L, respectively. Let A j be the j th column of A for j = 1, 2, . . . n.
The linear system (5) is consistent if and only if

∨n
j=1 A j ≥ b.

Theorem 3.6 ([6]) Let L , A, X and b be as in Theorem 3.5. If S is the set of feasible solutions
of (5), then S is a convex join-semi-sublattice of Ln.

In any bounded chain, by the following theorem we surly have a minimal solution for (5)
provided it is consistent.

Theorem 3.7 ([6], Theorem 4.3) Let L be a bounded chain, A and b as in Theorem 3.5. If
(5) is consistent, then it has a minimal solution.

Now we investigate a condition for an arbitrary lattice such that under this condition we
have surly a minimal solution for (5), if it is consistent.

Definition 3.8 Let (L ,≤) be a distributive lattice and consider two arbitrary descending
chains {ai }i∈I and {bi }i∈I of elements of L . We say L satisfies infinite chains meet distribu-
tivity (ICMD) if

∧

i∈I

(ai ∨ bi ) =
(

∧

i∈I

ai

)

∨
(

∧

i∈I

bi

)

. (6)

Note that in any lattice

∧

i∈I

(ai ∨ bi ) ≥
(

∧

i∈I

ai

)

∨
(

∧

i∈I

bi

)

(7)

holds.

Equality (6) also can be defined over an arbitrary lattice L and distributivity is not a neces-
sary condition for (6). For example (6) holds in any finite lattice which may not be distributive
(see Example 3.11). One can find a distributive lattice such that (6) does not hold (see Exam-
ple 3.1). But to find minimal solutions we need distributivity of L (see Remark 4.4). Hence
we defined (6) over a distributive lattice.

Theorem 3.9 Let (L ,≤) be a distributive lattice that satisfies (4). Then L satisfies the ICMD.

Proof Let {ai }i∈I and {bi }i∈I be two arbitrary descending chains of elements of L . We
have (

∧
i∈I ai ) ∨ (

∧
i∈I bi ) = ∧

i∈I
∧

j∈I (ai ∨ b j ), by (4). But ai ∨ b j ≥ ai ∨ bi ≥∧
i∈I (ai ∨ bi ),∀ j and ∀i ≥ j . Hence

∧
i∈I

∧
j∈I (ai ∨ b j ) ≥ ∧

i∈I (ai ∨ bi ). Now equality
holds by (7). ��

Note that the ICMD is a weaker condition than (2).

Example 3.10 (i) A distributive lattice which satisfies the DCC, satisfies the ICMD, too.
(ii) Any infinitely distributive lattice, satisfies the ICMD.

(iii) Any conditionally complete l-group satisfies (1) and (2) by Theorem 2.10, hence it
satisfies the ICMD.

123



290 J Glob Optim (2008) 41:283–298

Fig. 2

Example 3.11 Let L = {0, a, b, c, 1} be a diamond. The relationship of these elements is
shown in Fig. 2.

Clearly, L is not a distributive lattice, however (6) holds.

Theorem 3.12 Let (L ,≤) be an arbitrary lattice. Consider the linear system of inequalities
(5) over L. Then, any chain of solutions of (5) tends to a minimal solution if and only if L
satisfies the ICMD.

Proof Suppose L satisfies the ICMD. Let S be the set of all feasible solutions of (5) and
{X j } j∈J be a descending chain in S. We have

∨n
k=1(aik ∧ xk j ) ≥ bi for i = 1, 2, . . . , m and

for all j ∈ J . Hence
∧

j∈J
∨n

k=1(aik ∧ xk j ) ≥ bi , for i = 1, 2, . . . , m. Therefore, by (6),
∨n

k=1(aik ∧ (
∧

j∈J xk j )) ≥ bi , for i = 1, 2, . . . , m, which means that X = ∧
j∈J X j ∈ S.

Existence of a minimal solution follows from Zorn’s Lemma.
Now, suppose L does not satisfy the ICMD. Hence there exist two descending chains

{ai }i∈I and {bi }i∈I such that
∧

i∈I (ai ∨ bi ) > (
∧

i∈I ai ) ∨ (
∧

i∈I bi ). Consider the inequal-
ity x ∨ y ≥ ∧

i∈I (ai ∨ bi ). Obviously, (ai , bi )i∈I is a descending chain of solutions of this
inequality which does not tend to a minimal solution. ��
Corollary 3.13 Let (L ,≤) be a lattice which satisfies the DCC. Then, (5) has a minimal
solution provided it is consistent.

Proof It follows from Example 3.10(i) and Theorem 3.12. ��
Corollary 3.14 Let (L ,∧,≤) be a conditionally complete l-group. If (5) is consistent, then
it has a minimal solution.

Proof It follows from Theorem 2.10, Theorem 3.9 and Theorem 3.12. ��
Remark 3.15 For finding a minimal solution of the linear system (5), it is very important to
find a minimal solution for each of inequalities (see Algorithm 4.7). Consider the following
consistent inequality over a distributive lattice L:

n∨

i=1

(ai ∧ xi ) ≥ b (8)

Suppose (8) has a minimal solution and X = (xi )n×1 to be such a solution. Since X sat-
isfies (8) then (

∨n
i=1(ai ∧ xi )) ∧ b = b, which implies (

∨n
i=1(ai ∧ xi ∧ b)) = b. Let

yi = xi ∧ b for i = 1, 2, . . . , n, then (
∨n

i=1(ai ∧ yi )) = b. Hence, Y = (yi )n×1 is a solution
of (8). But yi = xi ∧ b ≤ xi for i = 1, . . . , n, hence Y = X by minimality of X and
(
∨n

i=1(ai ∧ xi )) = (
∨n

i=1(ai ∧ yi )) = b. Therefore, equality holds for all minimal solutions
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of (8). Moreover, if X = (xi )n×1 is a minimal solution of (8), then xi ≤ b for i = 1, . . . , n.
Let S̃ be a subset of S (the set of solutions of (8)) such that the equality holds for all elements
of S̃. Now, it is clear that minimal solutions of (8) are minimal elements of S̃.

4 Finding a minimal solution

In this section we are looking for all minimal solutions of the linear system (5). To do this,
as it was mentioned in Remark 3.15, it is necessary to find all minimal solutions of any
inequality in the system one by one. Finding minimal solutions of inequality (8) completely
depends on the structure of the lattice. For example, if L is a bounded chain, it is very easy to
find them; just consider a coefficient ai to be greater than or equal b, let xi = b and the others
equal to zero (see [8–10]). But in other lattices it is not that easy. The following remark gives
an upper bound for all minimal solutions and Theorem 4.2 helps us to find them up.

Remark 4.1 Suppose X = (xi )n×1 is a minimal solution of (8) over a distributive lattice
L . By Remark 3.15,

∨n
i=1(ai ∧ xi ) = b. Clearly, Y = (yi )n×1 is a solution of (8) where

yi = ai ∧ xi for i = 1, . . . , n and Y ≤ X . Hence, Y = X by minimality of X , which means
xi = ai ∧ xi for i = 1, . . . , n. Therefore, xi ≤ ai for i = 1, ..., n. Furthermore, xi ≤ b for
i = 1, . . . , n, by Remark 3.15. Hence, xi ≤ ai ∧ b for i = 1, . . . , n.

Theorem 4.2 Consider the following two systems:
{∨n

i=1(ai ∧ xi ) = b
xi ≤ ai ∧ b i = 1, . . . , n

(9)

and
{∨n

i=1 xi = b
xi ≤ ai ∧ b i = 1, . . . , n

(10)

Then X = (xi )n×1 is a solution of (9) if and only if it is a solution of (10).

The proof is straight forward.

Corollary 4.3 Minimal solutions of linear inequality (8) coincide with minimal solutions of
the linear system (10).

Proof By Remark 4.1, X = (xi )n×1 is an upper bound of all minimal solutions of (8) where
xi = ai ∧ b, i = 1, . . . , n and equality holds for all minimal solutions. Hence, they are the
solutions of (9) which are equivalent to (10). Therefore, minimal solutions of (8) are the same
as the minimal solutions of (10). ��
Remark 4.4 (i) Finding a minimal solution of (8) is completely depends on the structure of
the lattice. In distributive lattices by using Remark 3.15 we have a powerful criterion for
finding them (see Theorem 4.2 and Corollary 4.3). Note that Theorem 4.2 and Corollary 4.3
may not hold on non-distributive lattice. For example, let L be the lattice in Example 3.11
and consider the inequality (a ∧ x) ∨ (c ∧ y) ≥ b. However, this inequality has a minimal
solution, x = a, y = c; but equality does not hold for this minimal solution.
(ii) The inequality (8) over a distributive lattice L , may have infinitely many minimal solu-
tions. For example let L = P(R) be the Boolean lattice of all subsets of real numbers.
Consider the inequality

((1, 2) ∧ x1) ∨ ((1.9, 4) ∧ x2) ≥ (1.5, 3) (11)
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over L . Note that Xε = ((1.5, 1.9+ε), [1.9+ε, 3))T as well as Xδ = ((1.5, 1.9+ δ], (1.9+
δ, 3))T for ε ∈ (0, 0.1] and δ ∈ [0, 0.1) are minimal solutions of (11), where “T ” is the
transpose operation. Therefore, (11) has infinitely many minimal solutions.

Example 4.5 Let L be the lattice in Example 2.16 (iii) and consider the inequality

(4 ∧ x1) ∨ (6 ∧ x2) ∨ (3 ∧ x3) ≥ 6 (12)

By Remark 4.1, X = (2, 6, 3)T is an upper bound of minimal solutions of (12), and minimal
solutions of (12) are the minimal solutions of (10) with x1 ≤ 2, x2 ≤ 6, x3 ≤ 3 and b = 6.
One can find four minimal solutions for (12); Xm1 = (1, 6, 1)T , Xm2 = (2, 1, 3)T , Xm3 =
(2, 3, 1)T and Xm4 = (1, 2, 3)T .
Now consider another inequality

(8 ∧ x1) ∨ (27 ∧ x2) ∨ (9 ∧ x3) ≥ 36 (13)

The inequality (13) has just two minimal solutions Xm1 = (4, 9, 1)T and Xm2 = (4, 1, 9)T .

Example 4.6 Let L = P(X) be the Boolean lattice of all subsets of X = {a, b, c, d} and
consider the following inequality:

({a, b, d} ∩ x1) ∪ ({c} ∩ x2) ∪ ({a, c, d} ∩ x3) ≥ {b, c, d} (14)

By Remark 4.1, X = ({b, d}, {c}, {c, d})T is an upper bound of minimal solutions. Now solve
(10) for this upper bound and obtain four minimal solutions Xm1 = ({b}, {c}, {d})T , Xm2 =
({b}, φ, {c, d})T , Xm3 = ({b, d}, {c}, φ)T and Xm4 = ({b, d}, φ, {c})T .

Finding minimal solutions of an inequality is different from finding them over a chain, but
if the number of minimal solutions of (8) is finite, then the number of minimal solutions for
a linear system of inequalities (5) is finite and finding them is almost the same as it is over a
chain. If ni denotes the number of minimal solutions of i th inequality for i = 1, . . . , n, then
n = �n

i=1ni is an upper bound for the number of minimal solutions of (5). In Algorithm 4.7
and its implementation we use Peeva’s approach and notations (see [10]).

Algorithm 4.7
1. Find all minimal solutions of all inequalities individually by using Corollary 4.3.
2. Show any minimal solution by

∏
1≤ j≤n〈 x j

j 〉, which means the j th component of solution

is equal to x j . Note that the product means “and”. For example, the solution X = (2, 1, 3)T

is shown by 〈 2
1 〉.〈 1

2 〉.〈 3
3 〉.

3. Let Wi = ∑ ∏
1≤ j≤n〈 x j

j 〉 where summation is taken over all minimal solutions of the i th
inequality. Note that the sum means “or”.

4. We have to consider all inequalities simultaneously. Therefore, minimal solutions of the
system are computed by the concatenation

W =
∏

1≤i≤m

Wi . (15)

5. Expanding the parentheses in (15) by using the following properties of the concatenation.
We obtain a set of ways, from which we extract minimal solutions:

W =
∑ ∏

1≤ j≤n

〈
x j

j

〉

(16)
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In order to compute minimal solutions of (5), it is important to determine different ways
to satisfy simultaneously inequalities of the system. To achieve this aim we are interested in
properties of the concatenation (15).

Properties of the concatenation

1. In the concatenation, multiplication is distributive with respect to addition, i.e.,

〈
a

j1

〉 (〈
b

j2

〉

+
〈

c

j3

〉)

=
〈

a

j1

〉

.

〈
b

j2

〉

+
〈

a

j1

〉

.

〈
c

j3

〉

. (17)

2. This property is called absorption for multiplication:

〈
a

j

〉

.

〈
b

j

〉

=
〈

a ∨ b

j

〉

. (18)

The above expression gives a minimal solution for two different inequalities.
3. Concatenation (15) is commutative with respect to addition and multiplication.
4. This property is called absorption for addition:

∏

1≤ j≤n

〈
x j

j

〉

+
∏

1≤ j≤n

〈
y j

j

〉

=
∏

1≤ j≤n

〈
x j

j

〉

, (19)

if x j ≤ y j for j = 1, . . . , n.

Example 4.8 Let L be the lattice of Example 4.5 and consider the following linear system
of inequalities over L:

⎧
⎨

⎩

(4 ∧ x1) ∨ (6 ∧ x2) ∨ (3 ∧ x3) ≥ 6
(8 ∧ x1) ∨ (27 ∧ x2) ∨ (9 ∧ x3) ≥ 36
(3 ∧ x1) ∨ (9 ∧ x2) ∨ (4 ∧ x3) ≥ 18

(20)

We found minimal solutions of the first and the second inequalities in Example 4.5. The only
one minimal solution of the last inequality is (1, 9, 2)T . We have:

W1 =
〈

1

1

〉

.

〈
6

2

〉

.

〈
1

3

〉

+
〈

2

1

〉

.

〈
1

2

〉

.

〈
3

3

〉

+
〈

2

1

〉

.

〈
3

2

〉

.

〈
1

3

〉

+
〈

1

1

〉

.

〈
2

2

〉

.

〈
3

3

〉

W2 =
〈

4

1

〉

.

〈
1

2

〉

.

〈
9

3

〉

+
〈

4

1

〉

.

〈
9

2

〉

.

〈
1

3

〉

W3 =
〈

1

1

〉

.

〈
9

2

〉

.

〈
2

3

〉
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To compute W = W1.W2.W3, first compute W2.W3 as follows:

W2.W3 =
(〈

4

1

〉

.

〈
1

2

〉

.

〈
9

3

〉

+
〈

4

1

〉

.

〈
9

2

〉

.

〈
1

3

〉)

.

(〈
1

1

〉

.

〈
9

2

〉

.

〈
2

3

〉)

=
〈

4

1

〉

.

〈
9

2

〉

.

〈
18

3

〉

+
〈

4

1

〉

.

〈
9

2

〉

.

〈
2

3

〉

=
〈

4

1

〉

.

〈
9

2

〉

.

〈
2

3

〉

Now

W =
(〈

1

1

〉

.

〈
6

2

〉

.

〈
1

3

〉

+
〈

2

1

〉

.

〈
1

2

〉

.

〈
3

3

〉

+
〈

2

1

〉

.

〈
3

2

〉

.

〈
1

3

〉

+
〈

1

1

〉

.

〈
2

2

〉

.

〈
3

3

〉)

.

(〈
4

1

〉

.

〈
9

2

〉

.

〈
2

3

〉)

=
〈

4

1

〉

.

〈
18

2

〉

.

〈
2

3

〉

+
〈

4

1

〉

.

〈
9

2

〉

.

〈
6

3

〉

+
〈

4

1

〉

.

〈
9

2

〉

.

〈
2

3

〉

+
〈

4

1

〉

.

〈
18

2

〉

.

〈
6

3

〉

=
〈

4

1

〉

.

〈
9

2

〉

.

〈
2

3

〉

Therefore, the linear system (20) has exactly one minimal solution:

x1 = 4, x2 = 9, x3 = 2

Example 4.9 Let L be the lattice of Example 4.6 and consider the following linear system
of inequalities over L:

{
({a, b, d} ∩ x1) ∪ ({c} ∩ x2) ∪ ({a, c, d} ∩ x3) ≥ {b, c, d}
({c, d} ∩ x1) ∪ ({b, d} ∩ x2) ∪ ({a, b, c} ∩ x3) ≥ {a, c} (21)

We found minimal solutions of the first inequality in Example 4.5. The second inequality
has two minimal solutions; ({c}, φ, {a})T and (φ, φ, {a, c})T . By applying Algorithm 4.7,
we get four minimal solutions for (21) as follows:

Xm1 = ({b, c}, {c}, {a, d})T , Xm2 = ({b}, φ, {a, c, d})T

Xm3 = ({b, c, d}, {c}, {a})T , Xm4 = ({b, d}, φ, {a, c})T

Remark 4.10 Consider the linear system of equalities

A ∗ X = b (22)

over a distributive lattice L . If (22) is consistent then minimal solutions of it can be computed
the same as (5). A theoretical necessary and sufficient condition for consistency of (22) is
given in [6] and it is interesting to find a computational one.

5 The optimization problem

In this section we seek an optimal solution of the linear system of inequalities (5) with
respect to a linear objective function. By a linear objective function Z = C ∗ X , we mean
C ∗ X = ∨n

i=1(ci ∧ xi ), where C = (ci )1×n and X = (xi )n×1 are matrices over L . We show
this problem by

min{Z = C ∗ X |A ∗ X ≥ b}. (23)

Clearly C ∗ X ≤ C ∗ Y, whenever X ≤ Y by Theorem 3.2. Therefore, an optimal solution
for minimizing the objective function Z is among minimal solutions of (5). In this section
we give an upper bound for all minimal solutions of (5). Then, by means of this upper bound

123



J Glob Optim (2008) 41:283–298 295

and objective function, we will find the minimum of Z without finding all minimal solutions
of (5). Also, we offer a solution X for (5) such that the minimal solution which is less than or
equal X , is the optimal solution. The Algorithm 5.2 can be used even if (5) to have infinitely
many minimal solutions. This algorithm totally depends on join-irreducible elements (see
Definition 2.15(iii)). Hence, it is suitable for distributive lattices which every element of it to
be the supremum of join-irreducible elements. For example, if L satisfies the DCC, then every
element of L is a finite supremum of join-irreducible elements (Also see Remark 5.6(i)). This
algorithm does not work on chains but by a few changes it works on a Boolean lattice even
it has not join-irreducible elements (see Example 2.16 (iv)). Note that the complement of
J (a) (see Definition 2.15(iv)) is denoted by J (a)c and it is equal to J\J (a). The following
example may help to understand how the algorithm works.

Example 5.1 Consider the optimization problem (23) where the linear system of inequalities
(5) is as in Example 4.9, and C1 = ({a}, {a, c}, {a, d}). Then

C1 ∗ Xm1 = ({a} ∩ {b, c}) ∪ ({a, c} ∩ {c}) ∪ ({a, d} ∩ {a, d}) = {a, c, d}
C1 ∗ Xm2 = ({a} ∩ {b}) ∪ ({a, c} ∩ φ) ∪ ({a, d} ∩ {a, c, d}) = {a, d}
C1 ∗ Xm3 = ({a} ∩ {b, c, d}) ∪ ({a, c} ∩ {c}) ∪ ({a, d} ∩ {a}) = {a, c}
C1 ∗ Xm4 = ({a} ∩ {b, d}) ∪ ({a, c} ∩ φ) ∪ ({a, d} ∩ {a, c}) = {a}

The minimum of Z = C1 ∗ X is {a} and the optimal solution is Xm4 . Note that the supremum
of all minimal solutions is equal to {a, b, c, d} and it is possible to find an arrangement of
atoms (or join-irreducible elements) to minimize Z . Now consider C2 = ({b, d}, {c}, {d}).
Then

C2 ∗ Xm1 = ({b, d} ∩ {b, c}) ∪ ({c} ∩ {c}) ∪ ({d} ∩ {a, d}) = {b, c, d}
C2 ∗ Xm2 = ({b, d} ∩ {b}) ∪ ({c} ∩ φ) ∪ ({d} ∩ {a, c, d}) = {b, d}
C2 ∗ Xm3 = ({b, d} ∩ {b, c, d}) ∪ ({c} ∩ {c}) ∪ ({d} ∩ {a}) = {b, c, d}
C2 ∗ Xm4 = ({b, d} ∩ {b, d}) ∪ ({c} ∩ φ) ∪ ({d} ∩ {a, c}) = {b, d}

In this case we have two optimal solutions; Xm2 and Xm4 , with same values for minimizing
Z .

Algorithm 5.2 Consider the optimization problem (23) and the linear system of inequalities
(5) over a bounded below distributive lattice L with 0 as the least element .

(i) Let U j = ∨m
i=1(ai j ∧ bi ) for j = 1, . . . , n. Then U j is an upper bound for j th

component of all minimal solutions of (5).
(ii) Put c j = c j ∧ U j for j = 1, . . . , n. This is a helpful reduction on objective function’s

coefficients because c j ∧ x j ≤ c j ∧ U j for j = 1, . . . , n and for all minimal solutions
X = (x j )n×1.

(iii) 1. For i = 1, . . . , n
2. For j = 1, . . . , n
3. Put J (Ui ) = J (Ui ) ∩ J (Ui ∧ U j ∧ ci )

c

4. Put Ui = ∨
J (Ui )

5. Put J (U j ) = J (U j ) ∩ J (Ui ∧ U j ∧ c j )
c

6. Put U j = ∨
J (U j )

7. Next j
8. Next i
9. Put Z = ∨n

j=1(c j ∧ U j )
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10. The minimal solution which is less than or equal U = (U j )n×1 is an optimal
solution for (23).

Remark 5.3 Note that in step (iii) of Algorithm 5.2, we reduced c j ∧ U j as less as possible.
Therefore, the value of Z which is computed in number 8 of step (iii) is the minimum value.

Example 5.4 Consider the optimization problem in Example 5.1. We want to find the optimal
value of Z and optimal solution X , by following Algorithm 5.2.
Step (i): In this step we compute an upper bound for each component of a minimal solution.
We have:

U1 = {b, c, d}, U2 = {c}, U3 = {a, c, d}
Step (ii): Coefficients of the first objective function reduced as follows:

c11 = φ, c12 = {c}, c13 = {a, d}
Step (iii): After computing new upper bounds we have:

U1 = {b, c, d}, U2 = φ, U3 = {a, c}
and Z = {a}. Note that Xm4 is the only solution which is less than the above upper bound.

Example 5.5 Let L be the lattice in Example 2.16 (iii) and consider the following inequality
over L

(36 ∧ x1) ∨ (24 ∧ x2) ∨ (6 ∧ x3) ≥ 12 (24)

There are six minimal solutions for the above inequality with upper bounds

U1 = 12, U2 = 12, U3 = 6

which are listed in Table 1. Now consider an objective function with

c1 = 18, c2 = 24, c3 = 27

One can reduce c j , j = 1, 2, 3 to

c1 = 6, c2 = 12, c3 = 3

By following Algorithm 5.2 one gets new upper bounds as follows

U1 = 4, U2 = 1, U3 = 6

The minimum value of Z is 6 and the minimal solution which is less than or equal U is
Xm3 = (4, 1, 3)T . Note that there exist two other minimal solutions with the same value for
Z .

Remark 5.6 (i) It is interesting to find a characterization for lattices which the Algorithm
5.2 is suitable for them.

(ii) The Algorithm 5.2 can be used for a Boolean lattice with a few changes, even it has no
join-irreducible elements. The following algorithm mentions these changes.

Algorithm 5.7 Consider the optimization problem (23) and the linear system of inequalities
(5) on a Boolean lattice L with 0 as the least element.
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Table 1 Minimal solution of
(24)

No x1 x2 x3 Z

1 1 12 1 12
2 12 1 1 6
3 4 1 3 6
4 1 4 3 12
5 3 4 1 12
6 4 3 1 6

(i) Let U j = ∨m
i=1(ai j ∧ bi ) for j = 1, . . . , n.

(ii) Put c j = c j ∧ U j for j = 1, . . . , n.
(iii) 1. For i = 1, . . . , n

2. For j = 1, . . . , n
3. Put Ui = Ui ∧ (Ui ∧ U j ∧ ci )

c

4. Put U j = U j ∧ (Ui ∧ U j ∧ c j )
c

5. Next j
6. Next i
7. Put Z = ∨n

j=1(c j ∧ U j )

8. The minimal solution which is less than or equal U = (U j )n×1 is an optimal solution
for (23).

Example 5.8 Let L = Oreg(R) be the lattice in Example 2.16 (iv) and consider inequality
(11) over L . This inequality over L has infinitely many minimal solutions, Xε = ((1.5, 1.9+
ε), [1.9 + ε, 3))T for ε ∈ (0, 0.1] and Xδ = ((1.5, 1.9 + δ], (1.9 + δ, 3))T for δ ∈ [0, 0.1).
Now consider the objective function Z with c1 = (1, 2) and c2 = (2, 3). Follow the Algo-
rithm 5.7. In step (i) we have:

U1 = (1.5, 2), U2 = (1.9, 3)

In step (ii) we reduce c j s to c1 = (1.5, 2) and c2 = (2, 3). In step (iii) we reduce upper
bounds to

U1 = (1.5, 1.9], U2 = (1.9, 3)

Therefore, Z = (1.5, 1.9] ∪ (2, 3) and the optimal solution is X0 = ((1.5, 1.9], (1.9, 3))T .
Although the linear system (11) has infinitely many solutions, it has just one optimal solution
for the optimization problem (23).

6 Conclusion

Solving fuzzy linear systems A ∗ X ≤ b, A ∗ X ≥ b and A ∗ X = b over a bounded chain
has many applications. For example, in fuzzy automata theory, in algebra for solving fuzzy
matrix equations and inequalities as well as for relation equations, and inclusions and in
fuzzy programming. This paper extends this concept to L-fuzzy linear systems. The paper
is a discussion of methods for solving a minimization problem min{X |A ∗ X ≥ b} over a
bounded distributive lattice, where A, b are given matrices and all entries of X are unknown.
Necessary and sufficient conditions are established for the existence of minimal solutions
and the corresponding algorithm developed in this study.
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This discussion is generalized for the linear programming problem min{C ∗ X |A ∗
X ≥ b}, where C is given. The corresponding algorithms were given in special cases (see
Remark 5.6 (i)).
Further Research

(i) It is interesting to find a necessary and sufficient condition for lattice L , such that any
optimization problem (23) over L has an optimal solution.

(ii) It is also interesting search for an algorithm which can find all optimal solutions of (23).
(iii) Is there any relationship among different values of Z?
(iv) Do Algorithms work correctly if we replace ∨ and ∧ by any t-norm and t-conorm?
(v) It is also interesting to find a necessary and sufficient condition for consistency of a

non-linear system of equality or inequalities over a bounded distributive lattice.
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